Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37896223

RESUMEN

In this study, we developed functionalized polymeric micelles (FPMs) loaded with simvastatin (FPM-Sim) as a drug delivery system to target liver sinusoidal endothelial cells (LSECs) for preserving liver function in chronic liver disease (CLD). Polymeric micelles (PMs) were functionalized by coupling peptide ligands of LSEC membrane receptors CD32b, CD36 and ITGB3. Functionalization was confirmed via spectroscopy and electron microscopy. In vitro and in vivo FPM-Sim internalization was assessed by means of flow cytometry in LSECs, hepatocytes, Kupffer and hepatic stellate cells from healthy rats. Maximum tolerated dose assays were performed in healthy mice and efficacy studies of FPM-Sim were carried out in bile duct ligation (BDL) and thioacetamide (TAA) induction rat models of cirrhosis. Functionalization with the three peptide ligands resulted in stable formulations with a greater degree of in vivo internalization in LSECs than non-functionalized PMs. Administration of FPM-Sim in BDL rats reduced toxicity relative to free simvastatin, albeit with a moderate portal-pressure-lowering effect. In a less severe model of TAA-induced cirrhosis, treatment with FPM-CD32b-Sim nanoparticles for two weeks significantly decreased portal pressure, which was associated with a reduction in liver fibrosis, lower collagen expression as well as the stimulation of nitric oxide synthesis. In conclusion, CD32b-FPM stands out as a good nanotransporter for drug delivery, targeting LSECs, key inducers of liver injury.

2.
Curr Med Chem ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37828676

RESUMEN

Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.

3.
Pharmaceutics ; 15(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37376135

RESUMEN

Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate several cell biological processes including cell survival, proliferation, and differentiation. Alterations in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates. KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor development but also related to poor prognosis, low survival rate, and resistance to chemotherapy. Although different strategies have been developed to specifically target this oncoprotein over the last few decades, almost all of them have failed, relying on the current therapeutic solutions to target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore, nanoparticles of different natures are being developed to improve the therapeutic index of drugs, genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest. The present work aims to summarize the most recent advances related to the use of nanotechnology for the development of new therapeutic strategies against KRAS-mutated cancers.

4.
Pharmaceutics ; 15(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242726

RESUMEN

Slow-release delivery systems are needed to ensure long-term sustained treatments for retinal diseases such as age-related macular degeneration and diabetic retinopathy, which are currently treated with anti-angiogenic agents that require frequent intraocular injections. These can cause serious co-morbidities for the patients and are far from providing the adequate drug/protein release rates and required pharmacokinetics to sustain prolonged efficacy. This review focuses on the use of hydrogels, particularly on temperature-responsive hydrogels as delivery vehicles for the intravitreal injection of retinal therapies, their advantages and disadvantages for intraocular administration, and the current advances in their use to treat retinal diseases.

5.
Pharmaceutics ; 15(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986692

RESUMEN

Despite all the advances seen in recent years, the severe adverse effects and low specificity of conventional chemotherapy are still challenging problems regarding cancer treatment. Nanotechnology has helped to address these questions, making important contributions in the oncological field. The use of nanoparticles has allowed the improvement of the therapeutic index of several conventional drugs and facilitates the tumoral accumulation and intracellular delivery of complex biomolecules, such as genetic material. Among the wide range of nanotechnology-based drug delivery systems (nanoDDS), solid lipid nanoparticles (SLNs) have emerged as promising systems for delivering different types of cargo. Their solid lipid core, at room and body temperature, provides SLNs with higher stability than other formulations. Moreover, SLNs offer other important features, namely the possibility to perform active targeting, sustained and controlled release, and multifunctional therapy. Furthermore, with the possibility to use biocompatible and physiologic materials and easy scale-up and low-cost production methods, SLNs meet the principal requirements of an ideal nanoDDS. The present work aims to summarize the main aspects related to SLNs, including composition, production methods, and administration routes, as well as to show the most recent studies about the use of SLNs for cancer treatment.

6.
ACS Appl Mater Interfaces ; 15(8): 10398-10413, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795046

RESUMEN

The Kirsten rat sarcoma viral oncogene (KRAS) is one of the most well-known proto-oncogenes, frequently mutated in pancreatic and colorectal cancers, among others. We hypothesized that the intracellular delivery of anti-KRAS antibodies (KRAS-Ab) with biodegradable polymeric micelles (PM) would block the overactivation of the KRAS-associated cascades and revert the effect of its mutation. To this end, PM-containing KRAS-Ab (PM-KRAS) were obtained using Pluronic F127. The feasibility of using PM for antibody encapsulation as well as the conformational change of the polymer and its intermolecular interactions with the antibodies was studied, for the first time, using in silico modeling. In vitro, encapsulation of KRAS-Ab allowed their intracellular delivery in different pancreatic and colorectal cancer cell lines. Interestingly, PM-KRAS promoted a high proliferation impairment in regular cultures of KRAS-mutated HCT116 and MIA PaCa-2 cells, whereas the effect was neglectable in non-mutated or KRAS-independent HCT-8 and PANC-1 cancer cells, respectively. Additionally, PM-KRAS induced a remarkable inhibition of the colony formation ability in low-attachment conditions in KRAS-mutated cells. In vivo, when compared with the vehicle, the intravenous administration of PM-KRAS significantly reduced tumor volume growth in HCT116 subcutaneous tumor-bearing mice. Analysis of the KRAS-mediated cascade in cell cultures and tumor samples showed that the effect of PM-KRAS was mediated by a significant reduction of the ERK phosphorylation and a decrease in expression in the stemness-related genes. Altogether, these results unprecedently demonstrate that the delivery of KRAS-Ab mediated by PM can safely and effectively reduce the tumorigenicity and the stemness properties of KRAS-dependent cells, thus bringing up new possibilities to reach undruggable intracellular targets.


Asunto(s)
Neoplasias Colorrectales , Neoplasias , Animales , Ratones , Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales/patología , Micelas , Mutación , Polímeros/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/farmacología , Espacio Intracelular
7.
Pharmaceutics ; 15(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36839798

RESUMEN

In light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a). For the design of the hydrogels, specific building blocks were considered, named monomers (MN), co-monomers (CM), and cross-linkers (CL). These building blocks were ranked by considering the interaction with two peptides (MP-L and NCP-3a) as receptors. The better proposed hydrogel candidates were composed of MN3-CM7-CL1 and MN4-CM5-CL1 termed HG1 and HG2, respectively. The results obtained by MDs show that the biggest differences between the hydrogels are in the CM, where HG2 has two carboxylic acids that allow the forming of greater amounts of hydrogen bonds (HBs) and salt bridges (SBs) with both cAMPs. Therefore, using theoretical-computational methods allowed for the obtaining of the best virtual hydrogel candidates according to affinity with the specific cAMP. In conclusion, this study showed that HG2 is the better candidate for future in vitro or in vivo experiments due to its possible capacity as a depot system and its potential sustained and localized delivery system of cAMP.

8.
Curr Med Chem ; 30(17): 1963-1970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35770400

RESUMEN

Bacteria and their enzymatic machinery, also called bacterial cell factories, produce a diverse variety of biopolymers, such as polynucleotides, polypeptides and polysaccharides, with different and fundamental cellular functions. Polysaccharides are the most widely used biopolymers, especially in biotechnology. This type of biopolymer, thanks to its physical and chemical properties, can be used to create a wide range of advanced bio-based materials, hybrid materials and nanocomposites for a variety of exciting biomedical applications. In contrast to synthetic polymers, bacterial polysaccharides have several advantages, such as biocompatibility, biodegradability, low immunogenicity, and non-toxicity, among others. On the other hand, the main advantage of bacterial polysaccharides compared to polymers extracted from other natural sources is that their physicochemical properties, such as purity, porosity, and malleability, among others, can be adapted to a specific application with the use of biotechnological tools and/or chemical modifications. Another great reason for using bacterial polysaccharides is due to the possibility of developing advanced materials from them using bacterial factories that can metabolize raw materials (recycling of industrial and agricultural wastes) that are readily available and in large quantities. Moreover, through this strategy, it is possible to curb environmental pollution. In this article, we project the desire to move towards large-scale production of bacterial polysaccharides taking into account the benefits, weaknesses and prospects in the near future for the development of advanced biological materials for medical and pharmaceutical purposes.


Asunto(s)
Nanocompuestos , Polisacáridos Bacterianos , Humanos , Biopolímeros/química , Polímeros , Biotecnología
9.
Carbohydr Polym ; 295: 119859, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988981

RESUMEN

Local cancer treatment by in situ injections of thermo-responsive hydrogels (HG) offers several advantages over conventional systemic anti-cancer treatments. In this work, a biodegradable and multicompartmental HG composed of N-isopropylacrylamide, cellulose, citric acid, and ceric ammonium nitrate was developed for the controlled release of hydrophilic (doxorubicin) and hydrophobic (niclosamide) drugs. The formulation presented ideal properties regarding thermo-responsiveness, rheological behavior, drug release profile, biocompatibility, and biological activity in colon and ovarian cancer cells. Cellulose was found to retard drugs release rate, being only 4 % of doxorubicin and 30 % of niclosamide released after 1 week. This low release was sufficient to cause cell death in both cell lines. Moreover, HG demonstrated a proper injectability, in situ prevalence, and safety profile in vivo. Overall, the HG properties, together with its natural and eco-friendly composition, create a safe and efficient platform for the local treatment of non-resectable tumors or tumors requiring pre-surgical adjuvant therapy.


Asunto(s)
Hidrogeles , Neoplasias , Acrilamidas , Celulosa/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Hidrogeles/química , Niclosamida , Temperatura
10.
Eur J Pharm Biopharm ; 171: 39-49, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34998911

RESUMEN

Bromodomain and extraterminal domain protein inhibitors (BETi) for cancer treatment did not convince during their first clinical trials. Their epigenetic mechanism of action is still not well understood, even if MYC is generally considered as its main downstream target. In this context, we intended to assess two new nanoformulations of the BETi JQ1 for the treatment of colorectal cancer (CRC). JQ1 was encapsulated at 10 mg/mL in lipid nanocapsules (LNC) or polymeric micelles (PM), both compatible for an intravenous administration. Their effect was compared with free JQ1 on several CRC cell lines in vitro and with daily intraperitoneal cyclodextrin (CD)-loaded JQ1 on the CT26 CRC tumor model in vivo. We showed that LNC preferentially accumulated in tumor, liver, and lymph nodes. LNC-JQ1 and CD-JQ1 similarly delayed tumor growth and increased median survival from 15 to 23 or 20.5 days. JQ1 altered MYC in only two among four CRC cell lines. This MYC-independence found in CT26 was confirmed in vivo by PCR and immunohistochemistry. The main explanation of the JQ1 anticancer effect was an increase in apoptosis. The investigation of its impact on the tumor microenvironment did not show significant effects. Finally, JQ1 association with irinotecan did not synergize in vivo with JQ1 nanoformulations. In conclusion, we demonstrated that the JQ1 anticancer effect was not improved by nanoencapsulation even if their tumor delivery was probably higher. MYC inhibition was not associated to JQ1 efficacy in the case of the CT26 CRC murine model.


Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Liposomas , Nanopartículas , Proteínas/antagonistas & inhibidores , Triazoles/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Azepinas/administración & dosificación , Azepinas/uso terapéutico , Línea Celular Tumoral/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Infusiones Intravenosas , Ratones , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-myc/metabolismo , Triazoles/administración & dosificación , Triazoles/uso terapéutico
11.
Mater Sci Eng C Mater Biol Appl ; 131: 112483, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34857269

RESUMEN

A rational design accurate based on the use of Statistical Design of the Experiments (DoE) and Molecular Dynamics Simulations Studies allows the prediction and the understanding of thermo-responsive hydrogels prepared regarding their gelation temperature and anti-cancer drug release rate. N-isopropylacrilamide (NIPAM) modified with specific co-monomers and crosslinkers, can be used to prepare "on-demand" thermo-responsive hydrogels with the ideal properties for clinical applications in which local sustained release of drugs is crucial. Two preferential formulations resulting from the predictive studies of DoE and In Silico methods were synthesized by radical polymerization, fully characterized, and loaded with the anticancer drug Doxorubicin (Dox). The hydrogel formulations were characterized by swelling rate, turbidity, FTIR, 1H NMR, SEM, gelation time, rheology, and biocompatibility assays. Both formulations demonstrated adequate morphologic, rheological, and biocompatibility properties; however, important differences in terms of drug retention were detected. As demonstrated by a Dox cumulative release study and posteriorly confirmed by an efficacy assay in an in vitro colorectal cancer model, the formulation composed by NIPAM and 4-penten-1-ol crosslinked with poly(ethylene glycol) diacrylate (PEGDA) (PNiPenPH) present a slow release over the time, presenting ideal properties to become and ideal depot system for the local sustained release of anticancer drugs as adjuvant therapy or in the case of non-resectable tumors.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Preparaciones de Acción Retardada , Doxorrubicina/farmacología , Liberación de Fármacos , Humanos , Hidrogeles , Temperatura
12.
Int J Pharm ; 606: 120954, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34332061

RESUMEN

Despite the enormous efforts done by the scientific community in the last decades, advanced cancer is still considered an incurable disease. New formulations are continuously under investigation to improve drugs therapeutic index, i.e., increase chemotherapeutic efficacy and reduce adverse effects. In this context, hydrogels-based systems for drug local sustained/controlled release have been proposed to reduce off-target effects caused by the repeated administration of systemic/oral anticancer drugs and improve their therapeutic effectiveness. Moreover, it increases the patient welfare by reducing the number of administrations needed. Among the several types of existing hydrogels, the thermo-responsive ones, which are able to change their physical state from liquid at 25 °C to a gel at the body temperature, i.e., 37 °C, gained special attention as in situ sustained drug release depot-systems in cancer treatment. To date, several thermo-responsive hydrogels have been used for drugs and/or genetic material delivery, yielding promising results both at preclinical and clinical evaluation stages. This culminates in the market authorization of Jelmyto® for the treatment of urothelial cancer. Here are summarized and discussed the last 10 years advances regarding the application of thermo-responsive hydrogels in local cancer treatment.


Asunto(s)
Hidrogeles , Neoplasias , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Neoplasias/tratamiento farmacológico , Temperatura
13.
Nanomedicine (Lond) ; 16(17): 1471-1485, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34160295

RESUMEN

Aim: Improving the stability and anti-cancer stem cell (CSC) activity of citral, a natural ALDH1A inhibitor. Materials & methods: Citral-loaded micelles (CLM) were obtained using Pluronic® F127 and its efficacy tested on the growth of four breast cancer cell lines. The impact of the CLM on the growth and functional hallmarks of breast CSCs were also evaluated using mammosphere and CSC reporter cell lines. Results: CLM improved the stability and growth inhibitory effects of citral. Importantly, CLM fully blocking the stemness features of CSCs (self-renewal, differentiation and migration) and in combination with paclitaxel CLM sensitized breast cancer cells to the chemotherapy. Conclusion: Targeting CSCs with CLM could improve the treatment of advanced breast cancer in combination with the standard chemotherapy.


Asunto(s)
Neoplasias de la Mama , Micelas , Monoterpenos Acíclicos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Células Madre Neoplásicas , Poloxámero
14.
Cancers (Basel) ; 13(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803133

RESUMEN

Cancer remains as the second leading cause of death, worldwide. Despite the enormous important advances observed in the last decades, advanced stages of the disease remain incurable. The severe side effects associated to systemic high doses of chemotherapy and the development of drug resistance impairs a safe and efficiency anticancer therapy. Therefore, new formulations are continuously under research and development to improve anticancer drugs therapeutic index through localized delivery at tumor sites. Among a wide range of possibilities, hydrogels have recently gained special attention due to their potential to allow in situ sustained and controlled anticancer drug release. In particular, stimuli-responsive hydrogels which are able to change their physical state from liquid to gel accordingly to external factors such as temperature, pH, light, ionic strength, and magnetic field, among others. Some of these formulations presented promising results for the localized control and treatment of cancer. The present work aims to discuss the main properties and application of stimuli-responsive hydrogels in cancer treatment and summarize the most important advances observed in the last decades focusing on the use of pH-, light-, ionic strength-, and magnetic-responsive hydrogels.

15.
J Control Release ; 331: 198-212, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33482272

RESUMEN

Colorectal cancer (CRC) is a highly prevalent disease worldwide. Patient survival is hampered by tumor relapse and the appearance of drug-resistant metastases, which are sustained by the presence of cancer stem cells (CSC). Specific delivery of anti-CSC chemotherapeutic drugs to tumors by using targeted drug delivery systems that can also target CSC sub-population might substantially improve current clinical outcomes. CD44v6 is a robust biomarker for advanced CRC and CSC, due to its functional role in tumorigenesis and cancer initiation process. Here, we show that CD44v6-targeted polymeric micelles (PM) loaded with niclosamide (NCS), a drug against CSC, is a good therapeutic strategy against colorectal CSC and circulating tumor cells (CTC) in vivo. HCT116 cells were sorted according to their CD44v6 receptor expression into CD44v6+ (high) and CDv44v6- (low) subpopulations. Accordingly, CD44v6+ cells presented stemness properties, such as overexpression of defined stemness markers (ALDH1A1, CD44v3 and CXCR4) and high capacity to form colonspheres in low attachment conditions. NCS-loaded PM functionalized with an antibody fragment against CD44v6 (Fab-CD44v6) presented adequate size, charge, and encapsulation efficiency. In addition, Fab-CD44v6 significantly increased PM internalization in CD44v6+ cells. Further, encapsulation of NCS improved its effectiveness in vitro, particularly against colonspheres, and allowed to increase its intravenous dosage in vivo by increasing the amount of NCS able to be administered without causing toxicity. Remarkably, functionalized PM accumulate in tumors and significantly reduce CTC in vivo. In conclusion, CD44v6 targeted PM meet the essential conditions to become an efficient anti-CSC therapy.


Asunto(s)
Neoplasias Colorrectales , Células Neoplásicas Circulantes , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Receptores de Hialuranos , Micelas , Células Madre Neoplásicas , Niclosamida
16.
Cancer Drug Resist ; 4(1): 44-68, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35582007

RESUMEN

Advanced cancer is still considered an incurable disease because of its metastatic spread to distal organs and progressive gain of chemoresistance. Even though considerable treatment progress and more effective therapies have been achieved over the past years, recurrence in the long-term and undesired side effects are still the main drawbacks of current clinical protocols. Moreover, a majority of chemotherapeutic drugs are highly hydrophobic and need to be diluted in organic solvents, which cause high toxicity, in order to reach effective therapeutic dose. These limitations of conventional cancer therapies prompted the use of nanomedicine, the medical application of nanotechnology, to provide more effective and safer cancer treatment. Potential of nanomedicines to overcome resistance, ameliorate solubility, improve pharmacological profile, and reduce adverse effects of chemotherapeutical drugs is thus highly regarded. Their use in the clinical setting has increased over the last decade. Among the various existing nanosystems, nanoparticles have the ability to transform conventional medicine by reducing the adverse effects and providing a controlled release of therapeutic agents. Also, their small size facilitates the intracellular uptake. Here, we provide a closer review of clinical prospects and mechanisms of action of nanomedicines to overcome drug resistance. The significance of specific targeting towards cancer cells is debated as well.

17.
Pharmaceutics ; 12(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256036

RESUMEN

Within tumors, Cancer Stem Cell (CSC) subpopulation has an important role in maintaining growth and dissemination while preserving high resistance against current treatments. It has been shown that, when CSCs are eliminated, the surrounding Differentiated Cancer Cells (DCCs) may reverse their phenotype and gain CSC-like features to preserve tumor progression and ensure tumor survival. This strongly suggests the existence of paracrine communication within tumor cells. It is evidenced that the molecular crosstalk is at least partly mediated by Extracellular Vesicles (EVs), which are cell-derived membranous nanoparticles that contain and transport complex molecules that can affect and modify the biological behavior of distal cells and their molecular background. This ability of directional transport of small molecules prospects EVs as natural Drug Delivery Systems (DDS). EVs present inherent homing abilities and are less immunogenic than synthetic nanoparticles, in general. Currently, strong efforts are focused into the development and improvement of EV-based DDS. Even though EV-DDS have already reached early phases in clinical trials, their clinical application is still far from commercialization since protocols for EVs loading, modification and isolation need to be standardized for large-scale production. Here, we summarized recent knowledge regarding the use of EVs as natural DDS against CSCs and cancer resistance.

18.
Nanomedicine (Lond) ; 15(28): 2785-2800, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33191837

RESUMEN

The presence of highly resistant cancer stem cells (CSCs) within tumors as drivers of metastatic spread has been commonly accepted. Nonetheless, the likelihood of its dynamic phenotype has been strongly discussed. Importantly, intratumoral cell-to-cell communication seems to act as the main regulatory mechanism of CSC reversion. Today, new strategies for cancer treatment focusing into modulating tumor cell intercommunication and the possibility to modulate the composition of the tumor microenvironment are being explored. In this review, we summarize the literature describing the phenomenon of CSC reversion and the factors known to influence this phenotypic switch. Furthermore, we will discuss the possible role of nanomedicine toward altering this reversion, and to influence the tumor microenvironment composition and the metastatic spread of the disease.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Nanomedicina , Neoplasias/terapia , Células Madre Neoplásicas , Microambiente Tumoral
19.
Nanomedicine ; 29: 102267, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32681987

RESUMEN

Chronic liver disease (CLD) has no effective treatments apart from reducing its complications. Simvastatin has been tested as vasoprotective drug in experimental models of CLD showing promising results, but also limiting adverse effects. Two types of Pluronic® carriers loading simvastatin (PM108-simv and PM127-simv) as a drug delivery system were developed to avoid these toxicities while increasing the therapeutic window of simvastatin. PM127-simv showed the highest rates of cell internalization in rat liver sinusoidal endothelial cells (LSECs) and significantly lower toxicity than free simvastatin, improving cell phenotype. The in vivo biodistribution was mainly hepatic with 50% of the injected PM found in the liver. Remarkably, after one week of administration in a model of CLD, PM127-simv demonstrated superior effect than free simvastatin in reducing portal hypertension. Moreover, no signs of toxicity of PM127-simv were detected. Our results indicate that simvastatin targeted delivery to LSEC is a promising therapeutic approach for CLD.


Asunto(s)
Sistemas de Liberación de Medicamentos , Cirrosis Hepática/tratamiento farmacológico , Hígado/efectos de los fármacos , Simvastatina/farmacología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Cirrosis Hepática/patología , Micelas , Polímeros/química , Polímeros/farmacología , Ratas , Simvastatina/química , Distribución Tisular/efectos de los fármacos
20.
Pharmaceutics ; 12(2)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075316

RESUMEN

Inclusion bodies (IBs) are protein nanoclusters obtained during recombinant protein production processes, and several studies have demonstrated their potential as biomaterials for therapeutic protein delivery. Nevertheless, IBs have been, so far, exclusively sifted by their biological activity in vitro to be considered in further protein-based treatments in vivo. Matrix metalloproteinase-9 (MMP-9) protein, which has an important role facilitating the migration of immune cells, was used as model protein. The MMP-9 IBs were compared with their soluble counterpart and with MMP-9 encapsulated in polymeric-based micelles (PM) through ionic and covalent binding. The soluble MMP-9 and the MMP-9-ionic PM showed the highest activity values in vitro. IBs showed the lowest activity values in vitro, but the specific activity evolution in 50% bovine serum at room temperature proved that they were the most stable format. The data obtained with the use of an air-pouch mouse model showed that MMP-9 IBs presented the highest in vivo activity compared to the soluble MMP-9, which was associated only to a low and a transitory peak of activity. These results demonstrated that the in vivo performance is the addition of many parameters that did not always correlate with the in vitro behavior of the protein of interest, becoming especially relevant at evaluating the potential of IBs as a protein-based nanomaterial for therapeutic purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...